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Received 19 September 1990 

Abstract. We repon calculations of the critical capacity of perceptrons that are subject to 
pattern-dependent noise. We also calculate the capacity of a perceptron whose weights 
take values on a shifted sphere, and show haw this system resembles ‘noisy’ behaviour in 
some limits. 

:. ,...--J..”*:-.. 

In calculations of the average critical capacity of perceptrons, the couplings J,  are 
assumed to be constrained to take a set of possible values. In her original work [ I ] ,  
Gardner considered couplings restricted to take values on a sphere. Several other 
possibilities were later studied along the same lines, such as binary valued ( J ,  = *l) 
[2,3!, spheric.! p!us sign-cnns!rained [d] and J ,  !Eking !imi!s of discrete se! of va!nes 
[SI. More recently we have presented a closed form geometrical expression for the 
capacity when the J, are constrained to lie on a general surface [ 6 ] .  

In practical realizations of neural networks some of these constraints may appear 
naturally; for example, in an all-optical neural network if may be difficult to implement 
neurons with both excitatory and inhibitory incident connections [7]. 

The geometrical constraints mentioned above can, in principle, have a noisy 
component; for example, the allowed range of J, may contain a part which varies 
randomly between sites i. In the case of a perceptron, such random variations of the 
constraints will have an effect on the output through generation of a ‘synaptic noise’, 
which is pattern dependent but otherwise fixed. Under certain circumstances this ‘noise’ 
can be considered to be uncorrelated to the output that corresponds to noise-free 
constraints. 

In this paper we first study the effect of an uncorrelated pattern-dependent output 
noise on the capacity of simple perceptrons. Secondly we study the effect of a constant 
shift in the constraints satisfied by the J , ,  and show that in the limit of large shifts the 
effect is equivalent to the previous noisy situation. 

We follow the treatment of Gardner [I] ,  who calculated a , ( k ) ,  the critical capacity 
for storing random patterns. The first problem we consider is one in which the 
embedding field of a pattern is subject to an (additive) noise I* .  This noise may 
have any one of a variety of sources. For example, the single output unit may have a 
noisy threshold, k +  k +  I”. Alternatively, each of the N couplings J, may be shifted 
away from its (spherically) constrained value by a non-constrained Gaussian distributed 
random term. The question we ask may be stated as follows: if the threshold k is 
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allowed to fluctuate, i.e. takes larger values when some patterns are presented and 

P e r f o r m i n g  a quenched average for Gaussian noise with mean I' = 0 and variance 
(t')*= a2,  we find that the critical capacity behaves as follows: 
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smaller values for others, how is the capacity affected? - 

where n,(O, k) is the capacity calculated (with no noise, i.e. a =0) by Gardner, and 

The second problem studied is that of couplings J, which do  not have the same 
symmetry as the stored patterns, e.g., when J and -J occur with different weights, 
whereas 6' and -6" have the same probabilities. We realize this situation by restricting 
the allowed vector J to lie on a sphere whose centre is shifted by 84 = a  from the 
origin. This problem is a (rather instructive) particular case of a more general situation, 
in which the vectors J are constrained to any general hypersurface [ 6 ] .  Finally we 
show that in the limit of large a the two problems become identical. 

2. Brief review of Gardner's calculation 

To introduce notation, we first summarize briefly the calculation of Gardner [l]. We 
consider a single output unit, whose state S=*l  is determined according to the 
nonlinear rule 

The input units take values S, = 67 = i 1 ,  where CL = 1,. . . , p randomly generated input 
patterns are to be mapped onto S = f' = & I ,  also chosen at random. Gardner posed 
the following problem: what is the largest value of a = p l  N for which J, can be found, 
that satisfies p conditions on the embedding fields, 

under the constraint 
w ,. 

J;= N. 
, = I  

( 5 )  

The volume of weights in J-space that achieve correct mapping is given by 

(6) 

Dependence on the patterns { f }  enteKthrough h", see (4). To obtain the typical 
volume, one has to take In V =  (d/dn)V"I.-o+, where the bar denotes averaging over 
the (5" )  configurations. 
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Using the replica method, and expressing the 8 and 0 functions as integrals, V" 
- 

can be expressed as 

(7) 
with a = p / N ,  and 

The integral (7) i s  calculated by steepest descent. A replica symmetric minimum 
is assumed, of the form 

4.0 = 4 = i F  E,, = i E  (9) 

G,(q, k) = n lkmln  H[(&t+k)/(l -q)"2] Df 

with this simplification the expressions (8) reduce in the n + 0 limit to 

( loo )  

d t  e-,2/2 

G Dt=- H(x) = Ixm Dt, 

and 

f In 2 ~ - f  l n ( 2 E + F ) + -  __ ( 1 1 )  2 2 E + F  ' 

The remaining minimization problem yields 

In V 1 
N E . F . ~  n -= extr- (aGo(y,  k ) +  G,(iF, iE)+fnFq).  (12) 

As the number of patterns (and the corresponding conditions (4)) increases, the volume 
of solutions shrinks. When this volume shrinks to zero, the angle between all pairs of 
solutions approaches 0, and hence q +  1 as a+ a,. The saddle point equations (12) 
have a solution in this limit only if the condition 

is satisfied. For k = 0, a== 2, and a , ( k )  decreases as k increases, ac- 1/ k2 for large k. 

3. Noisy patterns 

We now turn to calculate the capacity of a perceptron whose embedding field is 
subjected to a Gaussian noise. First we state the problem we study, next we explain 
how it differs from other related calculations, and then we present the results. Consider 
a perceptron whose response to an input pattern is given by: 
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Here the ‘noise’ is Gaussian distributed, p= 1 and i = O  (note that the width a is 
now scaled out). As explained in the introduction, a noisy threshold will give rise to 
such an input-output relation. We perform a quenched average over the noise, which 
corresponds to the following physical situation: for each stored pattern p, generate a 
shift af’ of the threshold, and require that the relation 

holds for every pattern. An alternative interpretation can be obtained by posing the 
following question: the couplings I, contain a principal term J,?. which satisfy the 
spherical constraint Z, (JF)’ = N, and a random term SJ, 

J,=J,?+SJ,. (16) 
A solution is found by searching the JT-space, while keeping the U, fixed. This 

‘frozen synaptic noise’ adds to the field of the random patterns a Gaussian distributed 
noise of the form 

The effect of such ‘static synaptic noise’ were investigated for Hopfield networks 
[ X I  as well as for Hebhian feed-forward layered nets [9]. 

Here we calculate the volume of the space of interactions that will give the correct 
output to p patterns {r in the presence of the noise. One needs to perform a quenched 
average over the noise field. The volume of solutions is given by: 

and we evaluate 

where the bar now denotes averaging over the patterns {{”}, and over the (quenched) 
noise field f“ .  Related problems are those of training in the presence of noise. These 
were addressed numerically [IO] and analytically [ l l ]  for attractor networks, as well 
as for perceptrons 112-141. 

When the noise is averaged for each set of selected patterns 5, an annealed average 
over the noise is to be taken. In our case this corresponds to first integrating V ( { { ) ,  If}) 
over f, and only then averaging V” over the patterns I{}. 

It is interesting to see that had we considered an annealed average for the f”, the 
effect of the noise would have been to replace in the original Gardner’s calculation 
the 0 functions by the function: 

where H is the error function defined in ( lob) .  One can compare this situation to the 
calculation of the partition function a la Gardner-Derrida [2] with inverse temperature 
p and the perceptron learning Hamiltonian 
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In this case the B functions of Gardner's calculation are replaced by the function: 

f B ( x )  = epx + (1 -e@")s(x). (22) 
Both are particular cases of the calculation of Ahbott and Kepler [15]. The functions 
f and fp are sigmoids of typical widths a and l/p respectively. 

Turning now to our quenched average over the noise field, note that the calculation 
of V" proceeds along the same lines as Gardner's. We find that is now given by 
"_ a"..-.%"o:,.- ":...:,-- *,. 1 7 ,  ... : r L  at... ,. /'. I I .  1, - -  I O L \  L... ,. - - - # . . - A  
ail C A ~ ~ C J ~ U L ~  JL.l l l lal  L u  ( r ) ,  W1111 1115 D a l l l C -  Ul\l tpf, I 'Ppll)  d h  (OU), UUL U o  rCplULrU 

by G O A { ~ ~ ~ I ,  k ) ,  given by 

This differs from (8a) only in the last term; obviously Go..-,= G, as expected, and 
the effect of a it 0 is easily shown (by changing variables in (23)) to be given by 

Gop({qm}. k )  = Gu(lqgJ1, k'"')  (24) 

where 

and 

Hence the entire effect of the quenched noise field is taken into account by properly 
rescaling the variables 9, k. We proceed as before, assuming replica symmetry and 
minimizing the function 

1 -  1 
-In V =  extr- (aG,, (q'"), k'"')+ G,(iE, iF)+inFq).  N 6F .q  n (26) 

We are again interested in the 9 +  1 limit. Note that 

dq" 1 
dq l + a 2  

- 

?.,,.*- "I".. *L̂ . :c " F.."^t:^- X I ^ \  I" / *  - " \ Y ,  "" -- 1 *l-̂... 
,.ULC ana" U L a L  L 1  a 1U1LC'LU"J ,'I) U , * C L & j V "  a> {n-y) 'U 'I- 1, L11G11. 

lim [ ( I  -q)'f(q'~')]=(1+a2)'l im[(1 -q)y(q)].  (28) 
q - l  q-1 

Since dg,/dq diverges as (1  -9 ) -2  as q +  1 we have from (26)-(28) that in this limit 
the extremum equation is the same as in Gardner's calculation but with the substitution 

n,+a,:!+n2) (29) 

and hence we find 
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Here the function a,(O, k) is the critical capacity in the absence of noise, as given by 
(13). For k = 0 we also have k ‘ “ ’ =  0 ,  and hence 
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2 
a,( a, 0) = - ] + a 2  

and the capacity is degraded as 1/ (  1 + a 2 ) .  On the other hand, in the limit of large k‘”’ 
one finds a,( a, k )  = a,(O, k ) ,  as expected. 

One can also easily show that the replica symmetric solution is stable with respect 
to transverse fluctuations if 

a, (“ DI - 1  <O. (32) 
-p 

Inserting the expression for ac this condition reads: 

k‘“’ 1; *(”> ( t +  k ‘“ ’ )  Df + a’ ( I  + k‘“’)’ Df> 0. (33) 

We notice that for a # 0 this condition is satisfied even for some negative values of k 

4. Biased (shifted) Jj 

We now turn to study the situation in which the weights 4 are constrained in a manner 
that violates the symmetry of the patterns ([,”=*1 with equal probability). To be 
specific, we consider a spherical constraint of the form 

E(J, -a , )*= N (34) 
i 

where a, = +a. The point a is the centre of a hypersphere in the space of weights, on 
which all 4 are restricted to lie. The volume of solutions is given by 

where we changed variables to - 
J .  = J .  - a .  

J J I ’  

It is easy to see that under the ‘gauge transformation’ - .  
67 + 6,’ sign a, 

~( (61 ,  {a , } )  = ~({i}, {a, = a } ) .  

J, +I, sign a, 

the problem becomes one in which all a, = +a, i.e. 

As long as 6: = *I occur with equal probability, we can assume a, = +a, without loss 
of generality. With this we can write (35) as 

where we used 
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It is instructive to compare (37) with (14). The term at’, due to the shifted constraints, 
plays the same role as the quenched noise did in our previous calculation. Here, 
however, the ‘noise’ is correlated with the embedding field: 

- 
(40) 

1 -  
h”t”=S,,,-1J=6,,,RJ. 

NJ 

When calculating 7, it is tempting to work with the full J, variables; then the only 
change with respect to the Gardner calculation is in the argument of the spherical 
constraint, being now 6 ( I I J ( J  -a)’- N). This temptation must, however, he resisted, 
since the corresponding order parameter qPv = (l/N)X,JfJ; is no longer the cosine 
of an angle, since J P  is not normalized! Therefore we lose the geometrical interpretation 
of q, and with it our advance knowledge that q + 1 at mc.  Hence we prefer to work 
with the normalized variables 4.. With respect to the Gardner calculation one has now 
terms of the form 

-$a2 1 xBxv-fa 1 x,x,(R,+R,) 
”. Y 0.7 

This function can he rewritten as 

(45) 
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Changing variables, and introducing 
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k r ’ =  k / (  1 + a 2 + 2 a R p ) “ 2  
(47 )  

qbRyl = 
q O y + a ( R p  + R,) + a2  

( l + a 2 + 2 a R , ) ” 2 (  1 +a2+2aR, ) ’ i2  

the expression for GuR(qoy, R,, k )  takes the form of (7). In particular, with the replica 
symmetric ansatz of the previous sections, supplemented by 

R , = R  S, = i s  

we find that again, CUR can be expressed in terms of the Gardner function Go, with 
rescaled variables: 

(48 )  G u n ( %  R, k )  = Go(q‘R’, k ‘R’)  
where 

+ 2 a R + a 2  
l + a 2 + 2 a R  (49a)  q ( R l  = 

k(Rl= k 
( 1  + 2 a R  + a2)’” 

As to the other function, GIR,  it is easy to show that 
nS2 

2(2E + F )  G,,(iE, iF, is)= G,(iE, iF )+  

(496)  

where, again, G,(iE, iF )  is the Gardner function (11). Therefore 7 is calculated, as 
before, by steepest descents and we obtain 

ns2 
2(2E + F )  

uGu(q‘R’ ,k‘R’)+G,( iE, iF)+ 
N w%S,E,F n 
These extremum conditions can be solved for F, E and S in terms of R and q:  

These again simplify considerably in the q -* 1 limit, for which they reduce to two 
equations, for a, and for R, of the form 

im Dt( f + k‘R’)2 
1-R‘ 

1 + 2 a R + a 2 = a ‘  p, 
m R 

a pi 
-- = ac 1- Df ( f + kCR’) f .  
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For k = k'R' = 0 the resulting quadratic equation has two solutions; 

(55) 
1 
a 

R = - a  R =  

Since we must have, by definition, (see (42)) (RI s 1, the only acceptable solution has 
the form 

which upon substitution in (54) yields immediately the critical capacity 

The result given in (57) for k = O  has a simple geometrical interpretation, which will 
be presented below. For finite k one can solve (53) only numerically. However, in the 
small k limit, one can expand and obtain 

we present m,(a) for various k in figure 1, and the numerical results for R in terms 
of a in figure 2. 

Clearly, when a is large and - R  is small the capacity tends to the 'noisy' result 
(30); and the effect of shifted spherical constraint on ac is the same as that of quenched 
noise. (Note that when - R  is small the 'shift term' (39) becomes typically uncorrelated 
with the embedding field cf (40).) 

t 

t-. u=2 

0 0.5 1.0 1.5 a 

Figure 1. Critical capacity in terms of the shift parameter o 
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Fipiie 2. 0: :he priaiiie;ei R in tsir7is 0: 6. 

Finally we have checked the stability of the replica-symmetric solution and found 
that it is stable against transversal fluctuations provided 

For la\< 1 the solution is stable for k>O, as in Gardner's case. For lal> 1, however, 
the limit of stability is shifted to negative values: the solution is found to be stable for 
k > k' c 0, precisely as was the case for noisy patterns. 

The previous result has a simple geometric interpretation. In figure 3 we show the 
sphere of values of J,  (note that for a < 1 the origin is inside and for a > 1 outside it). 
Over it we have drawn two points Jf ,  JT corresponding to two replicas. We have in 
figure 3 

R R  cos n = qp, cos n =qpr 

and also, for A = p, y 

d - ; + - 2  I m - "  * -  U T L U R *  
0 - " 

A - &  

Figure 3. Geometric meaning of vanous quantities (see text). 
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For k = O  and a given set of patterns 5: the space of solutions is the intersection of 
the set defined by the &function in (35) (which has the shape of a pyramid with centre 
in the origin) and the sphere defined in (34). The number q R  turns out to be the typical 
cosine of the angle between two solutions (from the origin) and its square root is 
roughly the cosine of the typical angle from the centre to some edge of the set. 

For q +  1, q R  + 1 this angle tends to zero. Since the position set of solutions is 
:ha: 

most solutions will lie on a region of the sphere which subtends the largest solid angle 
from the origin. Considering annular domains on the sphere (34) with fixed values of 
R, we note that the solid angle subtended by them is proportional in the large-N limit 
to a sharply peaked function, corresponding to the magnitude (neglecting smooth 
functions of R )  

disiri'ouie; for ;ifererri Seis of paiierns ~soitopicaiiy from origint we 

1 + a 2 + 2 a R  

N 

By saddle point evaluation of (61) we recover the values (55). In figure 4 we show the 
predominant angles for a < 1 and a > 1. It is interesting to note that for a > 1 the 
domain of solutions is two disconnected sets. It is only connected for the particular 
value of R that predominates in the large N limit (cf figure 4). As to the actual value 
of the critical capacity, it can also be understood in geometrical terms, considering 
the fact that for a > 1 some solutions which are present in the a < 1 case are lost. The 
geometric dependance of the capacity of perceptrons whose weights are constrained 
in general ways is discussed elsewhere [6]. 

1 

O < I  a >  I 
Figure 4. The regions of solutions predominating for large N. 
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